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ABSTRACT 

The Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study 

(NDS)project was the largest naturalistic driving study ever conducted.  The data obtained 

from the study was released to the research community in 2014 through the project’s InSight 

webpage.  The objectives of this research were to (a) explore the content of this large dataset 

and perform statistical analysis to identify useful performance measures to detect distracted 

driving behavior, and (b) provide an outline for a crash index model that can be used to 

quantify the crash risk associated with distracted driving behavior.  Time series data on 

driver GPS speed, lateral and longitudinal acceleration, throttle position, and yaw rate were 

extracted as five appropriate performance measures available from the NDS that could be 

used for the purpose of this research.  Using this data, the objective was to detect whether a 

driver was engaged in one of three specific secondary tasks or no secondary task at all using 

the selected performance measures.  The specific secondary tasks included talking or 

listening on a hand-held phone, texting/dialing on a hand-held phone, and driver interaction 

with an adjacent passenger.  Multiple logistic regression was used to determine the odds of a 

driver being engaged in one of the secondary tasks given their corresponding driving 

performance data.  The results indicated that, while none of the models provided a 

statistically good fit of the data, the lateral acceleration measure seemed to be a useful 

indicator of drivers’ engagement in talking/listening and texting/dialing on the cell phone.  

The analysis of distracted driving behavior for by age and gender showed slightly different 

results.  The longitudinal acceleration variable appeared to perform better in predicting 

talking/listening and texting/dialing for drivers aged 70-89.  The lateral acceleration measure, 

however, performed better in predicting the engagement of younger drivers (16-29) in the 

same secondary tasks.  When considering the gender of drivers, the lateral acceleration 

performance variable proved to be more effective in predicting texting/dialing and 

talking/listening for both genders.  Still, these results are inconclusive due to the undesirable 

Hosmer and Lemeshow Test p-values observed in all the models.  Thus, the same analysis 

was performed using neural networks modeling, which is recognized for its capability of 

nonlinear pattern recognition.  The neural network analysis showed that the five performance 

measures can be used as surrogate measures of distracted driving.  The developed neural 

network models also proved to be good tools for detecting drivers’ engagement in secondary 

tasks.  A proposed framework of crash index calculation provides an insight into how the 

crash risk associated with distracted driving behavior can be quantified.  Further research is 

required to identify the required statistical analysis for the crash index calculation as well as 

provide further details on how such index can be used. 
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IMPLEMENTATION STATEMENT 

Distracted driving has long been acknowledged as one of the main contributors to crashes in 

the US.  Distracted driving has captured the attention of many researchers and transportation 

officials due to its significant impact on traffic safety.  A recent study funded by LTRC and 

University Transportation Center (UTC), “Distracted Driving and Associated Crash Risks,” 

concluded that texting and talking to passengers while driving impaired driving performance 

but failed to find any significant effects for cell phone conversation.  The study was however 

unable to make any statistical findings on the driving performance based on demographics 

and road facility type because of the limited sample utilized.  The Second Strategic Highway 

Research Program (SHRP 2) Naturalistic Driving Study (NDS) collected large amounts of 

data on people’s driving behavior in six states across the US.  This data offers ample 

opportunity to utilize a bigger sample size that will allow statistical conclusions to be drawn 

on various strata including gender, road facility type, age, and time of day.  This report 

presents findings of a comprehensive exploration study on the SHRP 2 NDS data to identify 

appropriate performance measures that can be used as surrogate measures for distracted 

driving behavior, and outline a methodology of developing a crash index.  The findings of 

this report provide an insight on the usefulness of the SHRP2 NDS data for distracted driving 

studies to the officials of DOTD and other interested transportation officials within 

Louisiana.  Based on the reported findings of this study, some performance measures were 

identified as surrogates to detect distracted driving behavior.  However, these findings were 

inconclusive as the powers of the performed statistical tests were very low.  This 

performance can be explained by the nonlinearity in driving behavior which needs more 

advanced analysis tools.  Thus, artificial intelligence was implemented and proved to have 

high accuracy in detecting drivers’ engagement in secondary tasks.  Moreover, the artificial 

intelligence tool proved that the five measures used in the analysis can be used as surrogate 

measures for distracted driving behavior. 
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INTRODUCTION 

Distracted driving is a dangerous epidemic that continues to cause deaths and injuries in 

related crashes throughout the U.S.  According to the National Highway Traffic Safety 

Administration, 3,328 people (including 540 non-occupants) were killed and an estimated 

additional 421,000 were injured in 2012 from distraction-affected crashes [1].  In Louisiana, 

a reported 675 people were killed in 2011 from motor vehicle crashes, and it is estimated that 

10% (national estimate from NHTSA) of these were a result of distracted driving.  Causes of 

distracted driving involve activities that divert the driver’s attention from the driving task and 

may include eating, adjusting the radio or climate controls, talking to passengers, cell phone 

use and texting, as well as many other external distractions.  Such distractions are likely to 

affect the driving performance and consequently elevate the crash risk of drivers. 

To minimize the effect of distracted driving on safety, proactive laws have been established 

banning secondary tasks while driving, specifically the use of cell phones as a main reason 

for distraction. These laws vary from state to state and can be established as either primary or 

secondary laws. When a law is established with primary enforcement, officers are permitted 

to ticket the driver for this offense without the driver disobeying any additional laws. On the 

other hand, for an officer to enforce a secondary law, a primary law must have been violated 

first.  The different primary and secondary laws issued in the all the united states are shown 

in Figure 1.  As shown in Figure 1(a), most of the states have issued a ban on cellphone 

texting for all drivers as a primary law.  Although several states have not included texting 

bans for all drivers, other precautionary measures were taken for novice drivers, as shown in 

Figure 1(b).  The majority of states have chosen to ban cellphone use entirely from novice 

drivers, with the assumption that they are more prone to cellphone related incidents.   

Given the effect of cellphone use while driving on safety and the significance of any related 

incidents that might take place for bus drivers, several states have issued regulations for 

cellphone use specifically for bus drivers.  While there is a discrepancy between states on the 

best way to regulate bus drivers’ use of cellphones, all but two states have banned the use of 

cellphones for such a category of drivers, as seen in Figure 1(c). 

The cellphone-use-while-driving regulations are meant to reduce the effect of distraction on 

safety.  Enforcement of these regulations leads many drivers to avoid being ticketed, and 

hence accidents related to cellphone use while driving are minimized and many lives are 

saved.  Most of these regulations, if not all, are based on results from research studies 

performed in collaboration between universities, research institutes, and government 

officials.  In Louisiana, a recent study funded by LTRC and UTC, “Distracted Driving and 
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Associated Crash Risks,” concluded that texting and talking to passengers while driving 

impaired driving performance but failed to find any significant effects for cellphone 

conversation.  The study was, however, unable to make any statistical findings on the driving 

performance based on demographics and road facility type because of the limited sample 

utilized.  With the recent availability of data from the Strategic Highway Research Program 

(SHRP 2) Naturalistic Driving Studies (NDS), there may be ample opportunity to utilize a 

bigger sample size in a further study that will allow statistical conclusions to be drawn on 

various strata including gender, road facility type, age, and time of day.  NDS offers the 

ability to observe drivers in their own vehicles, driving their typical commutes, and 

exhibiting their normal driving behavior [2]. This aspect, that is unique to NDS, more 

accurately reflects actual driving behavior when compared to driver simulator studies that use 

a simulation vehicle and ask the driver to maneuver through a simulated environment.  

However, the SHRP 2 data is relatively new, and it is not clear whether the data needs for the 

further study can be met solely from what is available.  Therefore, this study aims to perform 

a comprehensive exploration of the SHRP 2 NDS data with the view of identifying if it can 

provide the data required for an enhanced study on the crash risks of distracted driving.  This 

study also includes an outline for the development of a Crash Risk Index to evaluate potential 

risk associated with drivers based on their socioeconomic characteristics and secondary task 

involvement. 

 

 (a) All drivers 
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 (b) Novice drivers 

 

 (c) Bus drivers 

Figure 1  
Cellphone laws across the United States  
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Literature Review of Distracted Driving 

Distracted driving continues to be a risky behavior that poses a danger to drivers, vehicle 

occupants, and non-occupants such as pedestrians and cyclists.  Causes of distraction range 

from external sources (outside object, crash incident, scenery, advertisements, finding 

direction, etc.) to internal sources (in car moving object, reading or writing, eating or 

drinking, grooming, etc.).   It was not until the past decade, however, that distracted driving 

came to the forefront of public awareness, stemming in large part from the rapid increase in 

cell phone ownership and the explosion in portable and in-vehicle devices that have become 

available.  These devices allow drivers to engage in activities that were previously 

inconceivable (e.g., browsing the Internet) and have the capacity to absorb drivers’ attention 

to a whole new degree.  Nationwide, this has increased the crash risk of drivers and in the 

year 2012, resulted in increased number of fatal crashes (10%), injury crashes (18%), and 

motor vehicle traffic crashes (16%) [1].  It has become one of the focuses of state 

departments of transportation to reduce the occurrence of distracted driving and raise 

awareness of its dangers. 

Distracted driving has captured the attention of many researchers and transportation officials 

due to its significant impact on traffic safety.  Several studies showed that distracted driving 

is likely to increase the reaction time of drivers and their response time [3].  When analyzing 

the impact of specific secondary tasks, studies have shown that: (a) talking on a handheld 

cellphone impairs the drivers’ ability to maintain their speed and position on the road [4];and 

(b) texting increases braking reaction times and increases lane-position variability with no 

change in speed [5].  In another study by Klauder et al., the researchers investigated the crash 

risk associated with performing secondary tasks [6].  The results indicated that crash risk 

significantly increased for novice drivers when they were dialing a cellphone, texting, 

reaching for objects, looking at roadside objects, and eating.  On the other hand, for 

experienced drivers, the crash risk increased significantly only when drivers were dialing 

cellphones. 

According to Elander et al., unsafe driving behavior is a type of driving style that is 

developed over time.  This unsafe driving behavior becomes a habit that differs from one 

driver to another according to some socioeconomic characteristics [7].  Based on a detailed 

survey of 834 licensed drivers, Poysti et al. concluded that younger and male drivers tend to 

use phones more often compared to older and female drivers [8].  The survey also showed 

that driving for longer distances increases the likelihood of cellphone use.  More so, people 

tend to use cellphones more often when they perceive themselves as skilled drivers.  Based 
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on a survey conducted by Strayer et al., most drivers may not be aware of their impaired 

driving behavior while engaged in distracted driving [9].   

Driving simulator studies and naturalistic driving studies are two ways that distracted driving 

can be investigated.  Experiments in driving simulators are easier to control and data 

collection is relatively easier and non-invasive since vehicles are designed with the data 

acquisition component in mind from the onset.  They provide an inexpensive alternative to 

conventional experiment and sometimes impossible (unethical or safety implications) field 

tests that cannot be achieved in real life situations [10].  Nevertheless, the controlled settings 

and environments provide a lesser degree of realism compared to NDS.  The NDS data 

include observations of drivers in their own vehicles while driving their normal commutes.  

To collect these observations, the vehicles were equipped with sensors and other data 

collection gadgets, which are usually add-ons to the in-vehicle systems a vehicle will 

normally be equipped with.   While NDS will produce more realistic scenarios, and thereby 

more valuable data to study driver behavior and performance, the collection of data could be 

problematic and they are very expensive.  The first large-scale NDS conducted was the 100-

Car Naturalistic Driving Study which involved 241 drivers over an 18-month period resulting 

in about 3 million  vehicle miles that yielded 42,300 data hours, 82 crashes, 761 near-crashes, 

and 8,295 critical incidents [11].  Due to NDS being a behavioral-based observational 

method of analysis, there are many ways this data can be used to study driver behavior and 

risk analysis.  Some of the studies that have been conducted using the 100-car NDS include 

validation of near-crashes as crash surrogates, assessing safety critical braking events, 

prediction of high-risk drivers based on demographic, personality, driving characteristic data,  

modeling of driver car-following behavior and examining driver inattention 16].  

The SHRP 2 NDS is the second large-scale and the largest NDS conducted with 3,147   

drivers using all light vehicle types over a 3-year period in 6 sites across the nation: 

Bloomington, Indiana; Central Pennsylvania; Tampa Bay, Florida; Buffalo, New York; 

Durham, North Carolina; and Seattle, Washington. This study, amounting to over 35 million 

vehicle miles, is on a scale of 40 times larger than that of the 100-car NDS and specifically 

recruited drivers at different geographical locations to accommodate variations in weather, 

geographical features, and rural, suburban, and urban land use.  The data collection package 

includes roadway information database (RID) which provides information on lane 

departures, intersection crashes, and roadway characteristics such as grade, curvature, and 

posted speed limits.  The detailed nature of the data will allow analyses on the effect of road 

design characteristics or weather condition on the interaction between the driver and vehicle; 

driving style comparisons for specific road user groups; prevalence of mobile phone or other 

in-car information devices and the relationship with particular behavior patterns; the effect of 
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particular interventions; effect of passengers on distraction; and exploration of the interaction 

between motorized vehicles and vulnerable road [2].  While the 100-car NDS data is already 

10 years old, the SHRP 2 NDS data has just been released and can remain useable for the 

next 20 years or more.  Very few publications have been released on this relatively new data, 

providing guidance on how to use the large dataset and also documenting the effort of the 

data collection process [2].  

100-Car NDS Studies 

Although it is not the most extensive NDS data set available, the 100-car NDS study provides 

an insight on several safety concerns which has been available for several years and has been 

investigated extensively.   For instance, Montgomery et al. analyzed the impact that a 

driver’s age and gender has on their ability to break in normal driving situations [17].  For 

their experiment, near-crash and crash data was excluded from the data set.  The overall goal 

of the study was to determine if forward collision warnings (FCW) should be designed to 

tailor alert timings to the target demographic of a vehicle.  Therefore, the authors analyzed 

time to collision (TTC) data from the 100-car NDS dataset.  The results determined that 

males TTC at braking was 1.3 seconds lower on average than women’s TTC.  The results 

also showed that participants aged over 30 had a TTC at braking of 1.7 seconds higher than 

participants aged under 30 years. With such a significant difference in TTC for both age and 

gender it was determined FCWs should be designed based on the demographic of their 

particular vehicle to maximize the effectiveness of this warning system [17]. 

Another study by Bagdadi analyzed the NDS data using a new method based on critical jerk 

to determine when critical braking events have occurred [13].  The author compared his new 

method to another method commonly used to analyze longitudinal acceleration measures.  

The study investigated only the NDS data where evasive braking action was taken before 

near-crash events. To measure the braking, Bagdadi analyzed the jerk rate, which is the rate 

of change of acceleration by 1.0 g/s as the threshold for critical jerks.   While the longitudinal 

acceleration method produced a success rate of 54.2% with a threshold of 0.6g as seen in 

Figure 2, the new method provided a success rate of 86%.  Bagdadi also performed the test 

using critical jerk thresholds of 0.8g/s and 1.2g/s to compare.  The analysis results showed 

that the success rate increased by 9% and decreased by 9% for 0.8g/s and 1.2g/s, 

respectively.  A similar procedure was done for acceleration as shown in Figure 2.  The study 

results showed the proposed method outperformed the longitudinal acceleration method by 

1.6 times.  However, the proposed method was not able to determine the false rate of near-

crash events, which can be easily performed with the longitudinal acceleration method. 
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Jonasson analyzed the available near-crash identification method used for the 100-car study 

[12].  In this method, near-crash selection occurs in a two-step process. The first step uses 

kinematic triggers for automated identification of potential candidate events. Next, the visual 

recordings within the time windows of the events must be reviewed to select the near-crash 

events based on specified criteria.  Viewing the recordings to make the selections in this 

method allows for a subjective decision in determining near-crash events.  Jonasson noted 

two situations where there seems to be selection bias in the 100-car study.  The 100-car  

study showed that 34% of crashes involved no reaction from the driver, but only 5% of near-

crashes involved no reaction because these events were not captured by the kinematic 

triggers for near-crashes.  This was likely because these events were not captured by the 

kinematic triggers for near-crashes.  Another instance of bias is with rear-end striking at 

speeds under 25 km/h.  The data showed to drive slower than 25 km/h is 48 times more 

dangerous which seems highly unlikely. 

 

Figure 2  
Critical jerk vs. longitudinal acceleration analysis [13] 

To overcome these limitations, Jonasson applied two methods based on extreme value 

statistics to validate near-crash events differently [12].  The first method used near-crashes to 

predict crash frequency in the 100-car study data.  This was performed by fitting a 

generalized extreme function (GEV) distribution to the observed maxima -TTC in all near-

crashes.  Then, if a crash occurs when the TTC value crosses 0, an estimate of this 

probability was computed using the fitted GEV and compared with the observed crash 

frequency.  The second method involved multivariate near-crash modeling which was 

performed by finding continuous variables that could contribute to causing crashes.  Then, 

this was fitted to a multivariate GEV to max (–TTC), and the data were compared to the 

distribution of the same variables in the crashes.  The results of this study showed a 

discrepancy between the distribution of maximum speeds for crashes and maximum speeds 
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for near-crashes, portrayed in Figure 3.  He confirmed that there was considerable bias in the 

selection of near-crashes as shown below.  

 

Figure 3  
Crash data and near-crash selection vs. speed [12] 

Klauer et al. studied the impact of driver inattention on near-crash and crash risk using the 

100-car data [18]. In this study, distracted driving (driver inattention) data were obtained 

from baseline events and compared to those obtained from combined crash and near-crash 

events.  Based on eye glance data, several driver inattention instances were reported 

including engagement in secondary tasks, drowsiness, driving related inattention to forward 

roadway, and non-specific eye glances away from the forward roadway.  The study showed 

that drowsiness increased near-crash/crash risk by four to six times and engagement in 

secondary tasks increased risk by two times compared to normal driving.  On the other hand, 

driving-related inattention to the forward roadway increased safety by almost two times.  

This increase in safety was expected as driving related inattention included actions such as 

checking rearview mirrors, meaning that drivers were more alert.  The study also showed that 

drowsiness contributed to 22% of all the near-crash /crashes and occurred much more 

frequently during free flow situations.  For the baseline data, secondary tasks occurred during 

54% of the datasets, driving related inattention occurred during 44%, drowsiness occurred 

during 4%, and non-specific eye glances occurred during 2%.  The analysis showed that eye 

glances of fewer than 2 seconds were useful for the drivers, whereas those that lasted over 2 

seconds were considered to impact drivers’ safety significantly. 

SHRP2 NDS Studies 

The literature is being enriched with studies using SHRP 2 NDS data.  Example studies 

include the Iowa State University Center for Transportation Research and Education 

(CTRE): Lane departures on rural two-lane curves [19]; MRIGlobal: Offset left-turn lanes 

[20]; University of Minnesota Center for Transportation Studies (CTS): Rear-end crashes on 
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congested freeways [21] ; and SAFER Vehicle and Traffic Safety Centre at Chalmers 

University, Sweden: Driver inattention and crash risk [22]. These studies were only able to 

use limited data from the SHRP2 study, since they began before the data collection process 

was complete. 

Researchers at Chalmers University of Technology in Sweden performed the first study 

incorporating the SHRP 2 and RID data [22]. Their study analyzed the effects of driver 

distractions using the SHRP 2 data. The primary goal of the study was to develop inattention-

risk relationships that determine the relationship between driver inattention and crash risk in 

lead-vehicle pre-crash scenarios. These relationships help determine which glances are most 

dangerous for drivers.  

The dataset used for this study included 46 rear end crashes, 211 near-crashes, 257 matched 

baseline events, and 260 random baseline events. Matched baseline events allow the 

researchers to compare glance data by matching factors such as driver, trip, traffic flow, 

speed, and weather to the near-crash /crash events. Over 50 distracting activities were 

examined, but many of these distractions did not occur frequently enough to have statistical 

significance. 

The analysis confirmed some of the findings from previous studies. It confirmed that 

distracting activities occurred more frequently in near-crash events, visually demanding tasks 

involved more risk, and texting had the highest odds ratio, meaning it leads to a significant 

risk. The danger of glances was quantified using a three metric model including inopportune 

glance, mean glance duration, and the driver’s uncertainty of the driving scenario. Figure 4 

shows that crash risk increases, the longer a driver’s eyes are off path. The results also found 

that lead vehicle crashes are caused by a combination of glance duration and closure rate. 

The researchers note that their results suggest the need for FCW, autonomous cruise control, 

and autonomous emergency braking [22]. 

 

Figure 4  
Driver glance duration’s impact on crashes [22] 
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The second project assigned to the SHRP 2 data was MRIGlobal’s study, which uses NDS 

and RID data to provide guidance for safety countermeasures to offset left turn lanes [20]. 

Gap acceptance behavior was a contributing analysis factor to this study. The main goal of 

their research was to evaluate left turning gap acceptance by an extensive sample of drivers 

at different intersections that incorporate left turn lane offsets.  

Left turns at intersections can have a negative offset, positive offset, or no offset. The study 

analyzes situations where the drivers’ view was both obstructed by oncoming left turn 

vehicles and not obstructed.  The data set included 6,500 intersections, 44 signalized 

intersection left-turn offset pairs, and 14 two way stop controlled intersection left turn offset 

pairs. The research team analyzed video footage when NDS drivers made left turning 

maneuvers at these intersections and collected data including weather conditions, signal 

indications, presence of other vehicles, and the start and end time of each gap rejected or 

accepted by the driver. 

The analysis used a logistic regression to predict the critical gap from left turning vehicles in 

each offset category. The results determined that as the offset became more negative, the 

critical gap length increased. Critical gaps were also 2 seconds longer when the sight was 

restricted from an oncoming left turning vehicle, but this result is not considered a 

statistically significant amount. It was also determined that intersections designed to allow 

vehicles’ view to be blocked from oncoming left turn vehicles decreased the operation 

efficiency of the intersection. Since there was no crash data from these intersections, data 

was too limited to determine crash related safety [20]. 

The University of Minnesota’s study was not completed, so only preliminary analysis is 

available [21]. The primary goal of the study was to determine how drivers behave when 

encountering a freeway stopping wave. This information can be used to reduce congestion on 

urban roadways. 

The NDS data includes 250 freeway trips containing break-to-stop events. From the NDS 

data, researchers can obtain braking deceleration data, along with following vehicle reaction 

time and following distance. With this information, it is possible to gain more insight on 

drivers’ behavior on congested freeways [21]. 

Iowa State University’s research team performed a study to analyze roadway departures on 

rural two lane curves [19]. The purpose of the study was to use the NDS and RID data to 

determine how driving behavior, roadway factors, and environmental factors relate to these 

departures. Only paved roadways over one mile out of the urban area with speeds posted 40-

60 mph were included in the study.  
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The research helped to determine what defines a curve’s area of influence, normal behavior 

on a curve, and relationships between driver distractions and risk of roadway departure.  To 

define curves’ area of influence they had to determine where drivers begin to react to the 

curve. By using time series data, regression models were able to determine that drivers began 

reacting 538-591 feet upstream of the point of curvature. This information is useful for 

signage and other traffic control measures. 

Time series models were also used to evaluate lane position and speed of the vehicles. The 

results showed that drivers tended to maintain their upstream position during the curve and 

that distractions caused them to shift in the lane. If they were on the inside and encountered a 

distraction, they tended to shift 0.46 feet towards the right at the next point in the curve. This 

shows the need for rumble strips or paved shoulders as a counter safety measure.  Younger 

drivers were found to speed into curves more than older drivers by 0.5 mph per every 10 

years.  

In addition to these models, four multivariate logistic regression models were used to 

evaluate how environmental factors affect roadway departure. The results showed that right 

side lane departure is 6.8 times more likely on the inside of a curve. The presence of a 

guardrail decreased inside departures by 66%. Also, males were found to have outside lane 

departures four times as often as females [19]. 

A more recent study by Dingus et al. used the SHRP 2 data to evaluate driver crash risk 

factors and prevalence [23]. This research provided important insight, as drivers tend to 

become distracted when they are involved in secondary tasks such as texting, interaction with 

a passenger, talking on a handheld cell phone, eating, and adjusting the radio among others. 

Their research team conducted analyses on crashes and controls for impairment, performance 

error, judgment error, and distraction. Through their findings it was determined that drivers 

tend to be engaged with at least one secondary activity during 51.93% of the time while 

driving, which raises the crash risk to at least 2 times higher than it is during normal driving. 



  

12 
 

 

 

 

 

  



  

13 
 

OBJECTIVES 

The main focus of this exploratory study was to compile a technical summary of the 

limitations and capabilities of the SHRP 2 NDS data for an enhanced research on distracted 

driving that will provide valid statistical inferences to be applied to Louisiana drivers based 

on gender, age, and road facility type. 
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SCOPE 

This study focused on exploring the naturalistic driving data collected under the SHRP2 

Naturalistic Driving Study (NDS) at Virginia Tech Transportation Institute (VTTI).
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DATA EXPLORATION: SHRP 2 NATURALISTIC DRIVING STUDY 

The SHRP 2 program was created to address three national transportation challenges: 

improving highway safety, reducing congestion, and improving methods for renewing roads 

and bridges.  The Naturalistic Driving Study (NDS) was developed to target the safety 

component of the program.  The goal of the SHRP 2 NDS was to “improve traffic safety by 

obtaining objective information on driver behavior and driver interaction with the vehicle and 

the roadway” [2].  What do drivers actually do in their vehicles? What were they doing 

immediately before they crashed? These are examples of the type of research questions this 

study aimed to answer.  The SHRP 2 NDS was 40 times larger than the 100-Car NDS Study, 

and was the first of its kind to obtain data from all over the nation.  In total the study included 

3,147 drivers, about 50 million miles of driving, and 3 years’ worth of data from 6 data 

collection sites.  

Data Description 

To collect the NDS data, each vehicle was equipped with a data acquisition system (DAS) 

developed by the Virginia Tech Transportation Institute.  The DAS includes forward radar, 

accelerometers, vehicle network information, Geographic Positioning System (GPS), on-

board computer vision lane tracking, data storage capability and four video cameras, 

including one forward-facing, color and wide-angle view [2].  The DAS continuously 

recorded data while the participant’s vehicle was in operation.  A depiction of the equipment 

installed in each vehicle is shown in Figure 5. 

 

Figure 5  
Data Acquisition System installed in participant’s vehicles 
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The SHRP 2 NDS used all light vehicle types over a three-year period in 6 sites across the 

nation were specifically recruited across these six different geographical locations to 

accommodate variations in weather, geographical features, and rural, suburban, and urban 

land use.  In the next sections, the method in which SHRP 2 officials distributed the data 

obtained from the NDS is discussed.  Much of the data can be viewed on the SHRP 2 NDS 

Insight website.  In order to gain access to the site, researchers must register as either a 

“guest” or under “qualified researcher” status.  To obtain qualified researcher status, one 

must present acceptable proof of completion of Institutional Review Board (IRB) training for 

dealing with Personal Identifiable Information.  As a qualified researcher, more of the dataset 

is viewable online; however, even under this recognition, the data presented cannot be 

downloaded or exported directly from the webpage.  Researchers must complete a Data 

Sharing Agreement with SHRP 2 officials in order to receive the desired datasets in a usable 

form. 

NDS Data on InSight Website 

The website divides the database into the following five categories: Vehicles, Drivers, Trips, 

Events, and Query Builder, as shown in Figure 6. Within each category there is a description 

of the data available and an “Info” tab that when accessed provides background, conversions, 

coordinates, version history and an overview of all variables comprised within the dataset. 

Figure 7 shows a portion of one of these Info tabs. 

The Vehicles category contains summary information on the vehicles that were driven 

throughout the study.  Graphs are used to display data on vehicles by classification, model 

year, beginning mileage, amount of data collected, timing of equipment installation and 

number of vehicles actively collecting data per month.  Example information is shown in 

Figure 8 to Figure 13.  In addition to these graphs, a Vehicle Detail Table that provides 

detailed data on each vehicle used in the study.   
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Figure 6  
Data available on InSight webpage [2] 

 

Figure 7  
Portion of Vehicle Category overview on InSight webpage [2] 
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Figure 8  

Number of participating vehicles in the study per type [2] 

 
Figure 9  

Number of participating vehicles in the study per model year [2] 

 
Figure 10  

Number of participating vehicles in the study categorized by beginning mileage [2] 
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Figure 11  
Number of participating vehicles in the study categorized by date of participation [2] 

 

Figure 12  
Number of participating vehicles in the study categorized by the travelled kilometers in the 

study [2] 

 

Figure 13  
Travelled distance in the study categorized by vehicle type [2] 
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The Drivers category houses data on the numbers of participating drivers, amount of data 

collected per driver (example shown in Figure 14 and Figure 15), driver demographic and 

driving history (example demographics in Figure 16 and Figure 17), driver physical and 

psychological state, and driver participation experience.  The drivers were given physical 

strength tests that include hand strength measurements through a hand dynamometer, and 

raw walk time test that measured the time it took participants to complete a 10 feet walk each 

way.  To measure driver’s psychological condition, they were given Barkley’s ADHD 

Screening Test, a Risk Perception Questionnaire, Risk Taking Questionnaire, Sensation 

Seeking Scale Survey, and a Driver Behavior Questionnaire. 

 

Figure 14  
Trips travelled by each age group [2] 

 
Figure 15  

Trips travelled by each gender [2] 
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Figure 16  
Number of participating drivers in the study categorized by age [2] 

 

Figure 17  
Number of participating drivers in the study categorized by age and gender [2] 

 

A summary of the distribution of drivers sampled in the NDS study grouped by gender and 

age is provided in Table 1 and Table 2.  The sample size consisted of 52% women to the 

remaining 48% of men.  Driver ages were combined into unique groups ranging from 1-16. 

Table 3 defines the ages that make up each age group.  As shown in Table 1 and Table 2 

there was not an equal distribution of drivers per age group.  The sample consisted of more 

drivers in age groups 1 and 2 than that of the remaining groups.  While the Vehicles and 

Drivers categories contain useful background information on the overall study, the Trip Data 

and Events categories were most relevant to this research. 

The Trip Data category contains summary measures describing trips, trip length, duration, 

start and stop time, summary statistics for speed and acceleration, trip summary record table 

and trip density maps.  This section also details maximum deceleration and speed by vehicle 

classification, gender, age group, and data collection site.  More specifically, the Trip 

Summary Table contains a plethora of point data, or data measured at one point in time.  
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Examples of this are the trip duration, maximum, minimum and mean speeds which are all 

contained within the Trip Summary Table.  Time series trip data was also recorded 

throughout the NDS.  However, time series data is not displayed on the website, only the 

variables on which time series data were collected are shown online.  Researchers must 

contact SHRP 2 personnel in order to receive instruction on how to acquire this data.  This 

action was completed in order to get data that was required to conduct this research.  

Table 1  
Summary of female drivers sampled in NDS 

Female 
Drivers 
Sampled 

Age 
Group 

State 
Total 

% of 
Total FL IN NY NC PA WA 

1 57 22 56 44 15 67 261 17% 
2 98 31 95 48 19 74 365 23% 
3 28 8 36 19 12 28 131 8% 
4 14 3 19 10 3 15 64 4% 
5 17 6 13 9 3 8 56 4% 
6 10 7 10 12 3 11 53 3% 
7 10 7 15 10 7 14 63 4% 
8 15 9 20 11 10 12 77 5% 
9 14 5 13 11 13 14 70 5% 
10 14 7 21 9 5 11 67 4% 
11 21 7 18 16 6 18 86 6% 
12 14 6 23 7 7 12 69 4% 
13 20 7 31 13 6 26 103 7% 
14 14 6 16 12 3 16 67 4% 
15 3 3 1 3 1 10 21 1% 
16 1 0 0 0 0 1 2 0% 

Total 350 134 387 234 113 337 1555 100% 
 

The Events category provides records of baseline drives, crashes, and near-crash event 

records by event type and severity.  The Event Detail Table contains information that may or 

may not have contributed to a crash or near-crash event such as lighting, road grade, 

alignment, weather, and surface condition.  A Post Crash Interview was conducted after an 

incident occurred.  There, drivers detailed specific information regarding passengers in-

vehicle, description of the crash itself and of surrounding conditions that may or may not 

have contributed to the collision. 
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Table 2  
Summary of male drivers sampled in NDS 

Male 
Drivers 
Sample 

Age 
Group 

State 
Total 

% of 
Total FL IN NY NC PA WA 

1 54 21 36 41 8 53 213 15% 
2 83 25 60 24 32 53 277 19% 
3 18 12 24 25 9 23 111 8% 
4 15 2 14 15 11 13 70 5% 
5 6 3 16 14 5 13 57 4% 
6 14 3 8 8 3 8 44 3% 
7 12 4 16 15 3 16 66 5% 
8 7 3 21 11 6 12 60 4% 
9 13 3 13 14 1 8 52 4% 
10 14 8 14 8 5 12 61 4% 
11 22 10 24 8 5 22 91 6% 
12 16 7 19 24 6 11 83 6% 
13 24 12 28 30 8 30 132 9% 
14 13 6 13 13 3 21 69 5% 
15 4 3 6 4 2 13 32 2% 
16 1 0 1 1 0 2 5 0% 

Total 316 122 313 255 107 310 1423 100% 

 
Table 3  

Description of age categories 

Age Age Group 

16-19 1 

20-24 2 

24-29 3 

30-34 4 

35-39 5 

40-44 6 

45-49 7 

50-54 8 

55-59 9 

60-64 10 

65-69 11 

70-74 12 

75-79 13 

80-84 14 

85-89 15 

90-94 16 
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Finally, the last section of the website database is the Query Builder.  Here site users can 

select variables or conditions of interest to create a query.  Results can display graph output 

and cross tabulations or a table of individual records.  The complete list of variables available 

for all categories in the NDS dataset can be found in Appendix A. 

Events Category Variable Options 

Due to the nature of naturalistic data, video cameras, and video reductionists that manually 

review the film and draw conclusions, were used frequently to collect and categorize data.  

Therefore, it is important to describe how each variable in the Event category used in this 

study was explicitly defined in the NDS.  A Crash was here defined as “any contact the 

subject vehicle has with an object, either moving or fixed, at any speed in which kinetic 

energy is measurably transferred or dissipated” [2].  Any non-premeditated roadway 

departures where at least one tire left the travel surface are also categorized as a crash. 

Near-crashes tend to be more ambiguous and require more attention before an accurate 

categorization can be made.  A near-crash equals “any circumstance that requires a rapid 

evasive maneuvers by the subject vehicle or any other vehicle, pedestrian, cyclist, or animal 

to avoid a crash” [2].  Also, a near-crash meets the following criteria: not a crash, not pre-

meditated, evasion required, and rapid evasive maneuver required.  

Crash relevant was described as a situation “that requires an evasive maneuver on the part of 

the subject vehicle or any other vehicle, pedestrian, cyclist, or animal that is less urgent than 

a rapid evasive maneuver, but greater urgency than normally required to avoid a crash.”  

Non-conflict was defined as an incident that is within the bounds of “normal” driving 

behaviors and scenarios that is accurately represented by the time series data that created a 

flag.  Non-subject conflict was referred as any incident that was captured on video that did 

not involve the subject driver. 

Baseline drives were defined as those did not result in the pre-defined Crash, near-crash, 

Crash Relevant, Non-Conflict or Non-Subject Conflict and are represented of “regular” 

driving.  Only data from baseline drives were used to create the prediction models described 

in this paper.  This is because in order to analyze the effect of distraction on the driver, the 

researcher wanted to target drives both with and without a secondary task that did not result 

in any sort of crash or conflict. 

Data Acquisition 

The data used in this research was obtained through data user license agreements No. 

SHRP2-DUL-A-16-178 and SHRP2-DSA-15-62 from VTTI.  The acquired NDS data 

included Event Detailed Tables, Participants Demographics, and Time Series Data for 
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several performance measures.  In addition to these categories, additional information was 

obtained to link the driver to their trip and event information.  This linkage was important 

because it enabled comparisons of driver performance measures based on driver gender and 

age.  A summary of the obtained data is shown in Table 4. 

Table 4  
NDS data used in this study 

Data Category Variable Used Variable Definition Variable Options Used 

Events 

Event ID Identification number of Event  
Event Severity 1 Describes outcome of event type Baseline, Crash, Near-Crash 

Secondary Task 1 

Driver engagement in any 
activity other than driving, 
observed on video by data 
reductionist 

 No Secondary Tasks 
 Passenger in Adjacent 

Seat Interaction 
 Cell phone: 

Talking/Listening hand-
held 

 Cell phone: Texting* 
 Cell phone: Dialing 

hand-held* 
 Dancing 
 Eating 
 Grooming 
 …. 

Trip Time Series 

GPS Speed Vehicle speed from GPS 

 

Longitudinal 
Acceleration 

Vehicle acceleration in the X-
axis direction versus time 

Lateral 
Acceleration 

Vehicle acceleration in the Y-
axis direction versus time 

Yaw Rate 
(Z Axis) 

Vehicle angular velocity around 
the vertical axis 

Throttle Position 
(Pedal Accelerator) 

Position of the accelerator pedal 
collected from the vehicle 
network and normalized using 
manufacturer specifications 

Participants 
Demographics 

Participant ID Identification number of Driver 

 
 
 

Participant State of 
Origin 

State in which Driver resides 

Participant Age 
Group 

Age Range of Driver 

Participant Gender Sex of Driver 

Household Income 
Income Level of Driver’s 
Household 

*These two variables were combined into one category in the analysis 

The driving performance measures of GPS speed, lateral and longitudinal acceleration, 

throttle position and yaw rate, (reflected in variables used in Trip Time Series Category) 

were selected because literature revealed they were most frequently used in driver behavior 
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research [24].  Figure 18 displays a graphical depiction of the coordinate system used to 

define the lateral and longitudinal directions as well as the yaw axis [2].  

 

Figure 18  
SAEJ760 Coordinate System used in data collection  

 

The data categories displayed in Table 4 were described in the previous section.  The Event 

Severity 1 variable described the outcome of the event, denoted as either Baseline, Crash, 

Near-crash, Crash Relevant, Non-Conflict or Non-Subject Conflict.  There was also an Event 

Severity 2 designated, which was used when an additional event severity option described the 

corresponding event.  However, only Event Severity 1 was used in this research.  Secondary 

Task 1 described the observable driver engagement in one of many listed secondary tasks.  

There are also Secondary Task 2 and Secondary Task 3 variables defined that were used 

when the driver was engaged in two or three tasks respectively.  However, only Secondary 

Task 1 was used in this study.  Appendix B contains the entire listing of the available 

secondary tasks. 
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METHODOLOGY 

The main focus of this exploratory study is to compile a technical summary of the limitations 

and capabilities of the SHRP 2 NDS data for an enhanced research on distracted driving that 

will provide valid statistical inferences to be applied to Louisiana drivers based on gender, 

age, and road facility type.  More specifically, this research aims to thoroughly explore the 

SHRP 2 NDS database in order to (a) identify appropriate performance measures that can be 

used as surrogate measures of distraction, and (b) outline a methodology of developing a 

crash index.   

The methodology to achieve the research objective included performing a comprehensive 

review of the NDS data to identify the appropriate sample that can potentially represent 

Louisiana drivers, reviewing the available performance variables in the SHRP 2 NDS, and 

conducting a statistical assessment on each variable’s appropriateness as a surrogate measure 

to quantify distractions.  For the surrogate measure selection, statistical analysis and artificial 

intelligence were utilized.  For each type of modeling, the data had to go through several 

steps of data cleaning and reduction.  Finally, researchers explored the NDS data to develop 

an outline for a crash index. 

Creation of Appropriate Sample 

Within the NDS dataset sample, drivers were extracted from the following six states: Florida, 

Indiana, New York, North Carolina, Pennsylvania, and Washington. The Louisiana 

Transportation Research Center (LTRC) took interest in the NDS dataset and its potential to 

be used in future research regarding Louisiana roads.  In order for LTRC to use the NDS data 

for future research efforts that are of particular interest to their Louisiana constituents, it was 

important to select a sample from within the dataset that could be statistically representative 

of Louisiana drivers.  In order to obtain this representative sample, information on Louisiana 

drivers was statistically compared to that of the six states in the NDS study using a Chi-

square procedure.  

The Chi-square method was developed in 1900 by Karl Pearson, and used as a goodness-of-

fit test on non-normal distributions [25].  Chi-square tests if frequencies of an occurrence 

measured for a particular category are distributed as expected given only random chance 

influenced the outcome [25].  Therefore, the null hypothesis for a Chi-square test would be 

that the frequencies observed are statistically equal to the frequencies expected or those 

observed frequencies do not significantly diverge from what was expected.  In performing, 

the Chi-square test it is often difficult to establish what is expected.  In this application of the 

Chi-square, the expected frequencies were equal to selected Louisiana driver demographics.  
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The Federal Highway Administration’s 2012 Highway Statistics data were sourced in order 

to extract the percentage of licensed drivers in the state of Louisiana as of January 2012 [27].  

This data along with corresponding information in the NDS data was used in the Chi-square 

analysis.  

Chi-square Procedure 

In order to prepare the NDS data for Chi-square analysis, the first step was to record the 

percent of drivers studied in the NDS broken down by state origin, age group and gender of 

the driver.  This was also done using the Louisiana driver data.  Driver ages were divided 

into 15 age groups using the same age groups defined in the NDS as shown in Table 1,Table 

2, and Table 3.  It should be noted that there was a discrepancy in the age labeling between 

the NDS data and the FHWA Highway statistics on Louisiana drivers.  Louisiana elderly 

drivers were simply categorized as aged 85 and over, while in the NDS they provided a more 

detailed breakdown of the elderly (ages 85-89 and 90-94).  To account for this difference in 

the analysis, all NDS drivers aged 85 or older were combined into one category (Category 

20).  Gender was coded dichotomously, where the value 1 represents males and 2 represents 

females.  A new variable titled “delta frequency” was created to aid in the analysis.  Delta 

frequency equaled the absolute value of the difference in percentage between licensed 

Louisiana drivers and drivers in each of the states represented in the NDS. Table 5 displays 

an example of the organized data used in the analysis, all frequency data represents the 

percentage for each category.  Here delta frequency equaled the absolute value of the 

difference between percentage of Louisiana drivers and percentage of Florida drivers.  
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Table 5  
Data used for Chi-Square test of Louisiana drivers vs. Florida drivers 

Age 
Group 

Gender 
LA 

Frequency 
FL 

Frequency 
Delta 

Frequency 
1 1 2.55 8.12 5.57 
1 2 2.45 8.56 6.11 

2 1 4.41 12.46 8.05 
2 2 4.59 14.71 10.12 

3 1 4.32 2.7 1.62 
3 2 4.68 4.2 0.48 

4 1 4.32 2.25 2.07 
4 2 4.68 2.1 2.58 

5 1 3.84 0.91 2.93 
5 2 4.16 2.55 1.61 

6 1 3.84 2.1 1.74 
6 2 4.16 1.5 2.66 

7 1 4.32 1.8 2.52 
7 2 4.68 1.5 3.18 

8 1 4.8 1.05 3.75 
8 2 5.2 2.25 2.95 

9 1 4.32 1.95 2.37 
9 2 4.68 2.1 2.58 

10 1 3.84 2.1 1.74 
10 2 4.16 2.1 2.06 

11 1 2.88 3.3 0.42 
11 2 3.12 3.15 0.03 

12 1 1.88 2.4 0.52 
12 2 2.12 2.1 0.02 

13 1 1.38 3.6 2.22 
13 2 1.62 3.04 1.42 

14 1 0.9 1.95 1.05 
14 2 1.1 2.1 1 

20 1 0.45 0.75 0.3 
20 2 0.55 0.6 0.05 

 

SAS Enterprise Guide 6.1 software was employed to run the Chi-square test for all delta 

frequency values, representing the difference in percentage of drivers in Louisiana against all 

6 states individually.  For each test the null hypothesis equaled cell values are identical and 



  

32 
 

equal to 0 (% of drivers in Louisiana - % of drivers in state examined = 0).  The alternative 

hypothesis equaled cell values are not identical and not equal to zero. Table 6 displays the 

results of each Chi-square test. 

Table 6  
Results of each Chi-square Test 

State Chi-square Value P-value 
LA vs. FL 2.149 0.9999 
LA vs. IN 4.5377 0.9913 
LA vs. NC 7.7674 0.9011 
LA vs. NY 2.0004 0.9999 
LA vs. PA 11.8521 0.6182 

LA vs. 
WA 

2.2588 0.9998 

 

For the purpose of this test, a higher p-value was desired in order to fail to reject the null 

hypothesis.  That would mean it could not be stated with statistical certainty that the drivers 

in each state used in the NDS and the Louisiana drivers were not identical.  A higher p-value 

provides a corresponding small Chi-square value.  Therefore, a smaller Chi-square value was 

also desirable because as the Chi-square value decreases, the drivers would become more 

similar.  As shown in Table 6, New York and Florida had the largest p-values (0.9999) and 

their Chi-square values were also very close with values of 2.0004 and 2.149, respectively.  

Since the Chi Square values were only minimally different, another criterion, the 

geographical factor, was added into the test in order to finalize which data would be selected 

as the appropriate representative sample.  Since Florida and Louisiana are closer 

geographically, Florida was chosen as the sample that would be most representative of 

Louisiana drivers.  A more inconspicuous factor that contributed to Florida’s selection is the 

logic that a state like New York has a different social fabric, where driving characteristics are 

innately different than that of southern states such as Louisiana or Florida.  Due to those 

reasons, Florida data was selected as the representative sample. 

Data Reduction and Preparation (Statistical Analysis) 

To identify the surrogate measures of distracted driving, the available performance variables 

in the SHRP 2 NDS were reviewed and a statistical assessment on each variable’s 

appropriateness as a surrogate measure to quantify distractions was conducted.  Before doing 

so, the data was grouped, edited, and reduced to make the statistical analysis process easier. 
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Group Division, Data Aggregation and Editing 

In order to perform the desired statistical analysis, the data were divided into groups based on 

the secondary tasks in which the drivers were engaged.  After grouping, the data were 

aggregated and edited as further preparation for the eventual statistical analysis. 

 Group Division. In this research, the NDS time series data was divided into four 

groups: Group 0, Group 1, Group 2, and Group 3.  The secondary tasks that were analyzed in 

this research were: No Secondary Task, Passenger in Adjacent Seat Interaction, Cell phone: 

Talking/Listening hand-held, Cell phone: Texting, and Cell phone: Dialing hand-held.  From 

these five tasks, four groups were created for analysis.  The control group (designated as 

Group 0) contained event data when the driver was engaged in no secondary task.  Group 1 

consisted of event data for Cell phone: Talking/Listening hand-held.  Group 2 combined the 

data for Cell phone: Dialing hand-held and Cell phone: Texting.  These two tasks were 

combined into one group because these tasks are very similar in nature and putting them 

together allowed for a larger sample size in Group 2.  Finally, Group 3 contained event data 

for Passenger in Adjacent Seat Interaction.  

Data Reduction and Cleaning.  Proper data editing before applying data as input 

into analyses can aid in the assurance that the results obtained are accurate.  The data editing 

process included checking the time series data entries for the selected five performance 

measures to ensure their values were within an acceptable range and logically reasonable as 

well as identifying outliers or missing data.  Since the used data were time series, the first 

step taken in the data editing process dealt with aggregating the time intervals. 

Data on the five time-series variables were collected over a 20-second time interval for each 

driver.  Within the twenty-second time interval, the data were broken down into 0.1-second 

intervals.  For example, the data for the GPS speed variable were represented by 200 data 

points displayed in 0.1-seconds increments to account for the twenty seconds of data 

collected.  In order to reduce the data size, the time series data were aggregated into 1-second 

increments instead of the original interval of 0.1 seconds, using the time series procedure in 

SAS statistical software. The 200 data points for the time series variables were averaged to 

the point where it became organized into 20 data points representing each of the 20 seconds 

worth of data recorded.  The code for the procedure used is displayed in Figure 19. 
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proc timeseries data=baseline_gps_speed 
                out=baseline_gps_speed_timeseries; 
 id time interval=seconds accumulate=average; 
 by event_id; 
    var value; 
run; 

  
Figure 19  

Example SAS code used to aggregate time series data 

After the data was aggregated into 1-second intervals, the next step in the data editing 

process was to ensure the values were within an acceptable range.  The upper and lower data 

ranges of each time series variable were defined in the Trip Data category on the InSight 

webpage.  Other useful information on each variable was displayed as well such as variable 

units, accuracy and sign convention as seen in Figure 20. 

 
 

Figure 20  
GPS speed details displayed on InSight webpage 

All values outside of the predefined range limits were removed from the dataset for each of 

the five time-series variables studied.  Next, any entry that contained missing information 

was also removed.  Potential outliers were inspected using the distribution analysis task in 

SAS Enterprise Guide statistical software and removed once identified.  A summary of the 

amount and type of data removed can be found in Appendix C. 
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Test of Normality.  The next phase of data analysis involved conducting tests for 

normality on each of the performance measures.  The result affected the statistical analysis to 

identify the distracted driving surrogate measures.  The Kolmogorov-Smirnov test for 

normality was used because it is recommended when data entries exceed 2,000 and each 

variable of interest fits this criterion.  For a level of significance value set at 0.05, all of the 

tests resulted in statistically significant outcomes.  Therefore, under the null hypothesis that 

the data was distributed normally, this hypothesis was rejected in each test.  The p-values 

were identical regardless of the variable type and almost all of the normality tests resulted in 

a p-value equal to <0.01.  Only the Group 2 tests resulted in a different p-value (<0.0001).  

Due to these findings, it could be concluded that the datasets contained non-normal 

distributions.   

Independence of Groups 

In the data grouping and editing phase, multiple secondary tasks were found to be associated 

with each participant.  In order to perform many statistical tests, a major assumption is that 

each group of data is independent from the other.  This would mean that the same participant 

could not be placed in more than one group.  For example, even though a driver may have 

been texting (Group 2 task) and interacting with a passenger in the adjacent seat (Group 3 

task) during one of their trips, the associated performance measures for both of the groups 

cannot be used simultaneously; the driver must either be placed in Group 2 or Group 3 

exclusively.  This issue had to be addressed before proceeding to identify the distracted 

driving surrogate measures and ensure group independence. 

A large amount of effort was required to ensure each group was created independently of the 

other.  Due to the amount of data, it was imperative that each group of data be sorted first by 

Participant ID and then group Number to determine which participants originally had data 

that would place the participant in two, three or even all four of the groups.  Of the 2183 

unique Event IDs used in this research, there were 746 instances where a participant 

belonged to more than one group. 

After the participants belonging to multiple groups were extracted, a method of 

randomization was enacted to help ensure group independence.  In Excel, each field was 

given a random ID according to the Random ID function embed in the Excel program.  Then, 

those random IDs assigned were randomly ordered in the spreadsheet.  From here, each field 

associated with the random IDs were numbered in order (#1-746).  The spreadsheet was 

again sorted first by Participant ID and then by group Number. 
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Group Assignment Rules. Groups were assigned after following two steps of rules 

which are reflected in Table 7.  The first step involved only the groups where drivers 

engaged in some secondary task (Group 1, 2, or 3).  In this step of group assignment, 

participants were randomly assigned if previously in Group 1 and 2 or in Group 1 and 3.  

However, Group 2, where the driver was engaged in texting/dialing a hand-held cell phone, 

had a significantly lower amount of participants than that of those in Group 3.  Therefore, 

stratification was utilized in the special case when a driver was in Group 2 and 3.  If that 

driver was in both Group 2 and 3, they were automatically kept in Group 2 in order to 

increase the sample size within Group 2. 

The second step of group assignment included only participants who had instances where 

they engaged in Group 0.  In this case, if a driver was in Group 0 in addition to the new 

group they were just assigned according to step one, then that driver automatically stayed in 

their group assigned in step one.  This rule was created because there was already a large 

sample size for participants that were in Group 0 exclusively before any group assignment 

was necessary.  A summary of the final sample sizes for each group after the group 

assignment process is displayed in Table 8.  An important note, the “# of Samples before 

group Assignment” column represents the number of samples per group right before the rules 

were enacted.  These values are much lower than that of the original dataset because group 

assignment was performed after the data editing procedures of removing outliers and data 

values outside of the acceptable range were conducted. 

The five-time series attributes were utilized for the calling (Talking/Listening), texting 

(Texting/Dialing), and adjacent passenger interaction events.  Each event contains time series 

records for the five performance attributes over a period of nearly one minute with a 

resolution of 0.1 seconds.  Each event also included the starting and ending times of each 

secondary task that lasted around 6 seconds. 

To prepare the time series data for the ANN model, each observation was coded as “1” if 

associated with a secondary task (i.e., from the beginning to the end of the secondary task) 

and “0” otherwise (i.e., before the beginning or after the end of the secondary task).  By the 

end of the preparation phase, each secondary task had the total number of around 10,000 

time-series coded records. 
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Table 7  
Rules Created for Group Assignment  

Step Scenario Rule 

1 

Participant in 
Group 1 & 2 

If # assigned to Event ID where Group=1 is odd,  
keep that participant in Group 1 and eliminate all other 

group information for that participant 
If # assigned to the Event ID where Group=1 is even, keep 

that participant in Group 2 and eliminate all other group 
information for that participant 

Participant in 
Group 1 & 3 

If # assigned to Event ID where Group=1 is odd,  
keep that participant in Group 1 and eliminate all other 

group information for that participant 
If # assigned to the Event ID where Group=1 is even, keep 

that participant in Group 3 and eliminate all other group 
information for that participant 

Participant in 
Group 2 & 3 

Automatically keep that participant in Group 2 

Participant in 
Group 1, 2, & 3 

If # assigned to Event ID where Group=2 is odd, 
automatically eliminate all group information associated 

with Group 3, then refer to rules for when Participant is in 
Group 1 & 2 

If # assigned to the Event ID where Group=2 is even, 
automatically eliminate all group information associated 

with Group 1, then refer to rules for when Participant is in 
Group 2 & 3 

2 
Participant in 

Group 0 & any 
other Group 

Automatically eliminate all group data associated with 
Group 0 and keep Participant in the already assigned 

Group 

All data remaining after both Steps is automatically left for Group 0 

 
Table 8  

Final Sample Size Count by Group 

Group 
# of Samples Before 
Group Assignment 

# of Final Sample 
Size 

0 1501 1127 

1 162 102 

2 78 69 
3 442 299 

 

Data Reduction and Preparation (Artificial Intelligence) 

Data Cleaning and Reduction 

The next step was to clean and mine the data for the required information to analyze the 

pattern in the driving behavior associated with each secondary task.  As shown in  
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Figure 21, several steps are followed to clean and mine the data.  The acquired data had 

several missing observations, causing a problem in pattern recognition which is the main step 

in developing the ANN model.  Thus, overcoming the missing data problem was the first 

procedure in this data cleaning and mining stage. 

 

 
 

Figure 21  
Data cleaning and mining 

 

Each missing record was replaced with an interpolated value based on the preceding and 

following observations.  In order to differentiate between a missing-value “zero” and an 

actual zero-observation in the data, interpolation was only conducted in three cases: (a) the 

speed is less than 6.5 mph; (b) pedal position is less than 5%; (c) lateral acceleration, 

longitudinal acceleration, or yaw rate are transitioning from negative to positive values or 

vice versa.  It was noted that some performance attributes did not have any values throughout 

some events (e.g., longitudinal acceleration values in Event ID 1200034 were all zeros); 

these events were considered deficient and were removed completely from the analysis.  The 

next step was to normalize the events based on the associated timestamp.  Each event has 

different length of time duration around one minute.  In order to maintain the same duration, 

a total of 59 seconds interval that was the duration that all events satisfy, was set for all 

events.   

Distracted driving is a continuous action a driver takes over a specific time period.  Having 

said that, to understand the pattern in driver behavior while performing a secondary task or 

the primary task of driving, it is important to analyze the data over time and not as 

independent observations.  Thus, a moving time window technique is used to recognize the 

driving pattern along each time-series performance attribute.  The moving time window 

technique is an approach used to capture changes in an entire set of features over time.  The 

time window size is defined as the number of time steps over which the change in driving 

behavior is to be detected.  In this study, a time window of one second (10 time steps) is 

Normalize 
Timestamp  

Time window 
technique  

Standardization 
mean=0, var=1   

Treat missing 
data as zeros  

Linear 
interpolation 

Remove 
deficient event 
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used.  The small time step of one second was selected to detect any minimal change in the 

driving pattern.  For each time window, the standard deviation, as an attribute of the changes 

in driving patterns, was calculated for the observations within the time window for every 

performance attribute.  The time window technique operates by moving the time window 

one-time step (0.1 second) at a time, calculating the standard deviation for the observations 

within the time window.  For the likelihood coding (0/1), the average values within each time 

window were obtained.  At the end, a new dataset of standard deviations for the five 

performance attributes along with average likelihoods was obtained with a resolution of “1” 

second.  

When drivers are distracted, the selected five performance attributes change significantly 

according to the literature.  However, this change is not the same across all performance 

attributes.  Some attributes may show more significant changes compared to the others.  This 

may confuse the ANN model while analyzing the pattern of each attribute.  In other words, 

the ANN may treat some attributes as more important than the others, which could result in a 

biased detection accuracy.  Therefore, the resulting dataset of standard deviations from the 

previous step was standardized to have a mean value of “0” and a variance of “1” for each 

performance attribute.  This was done based on the formula in equation (1).  The resulting 

dataset from this step will allow the ANN model to treat all performance attributes equally. 

    (1) 

 

Where,  is the standardized value,  is the original variable value,  is the mean of the 

standard deviations across each performance attribute, and  is the standard deviation of each 

performance-attribute’s standard deviations.  With this step, the time-series data for the 

different performance attributes along with the likelihoods of performing secondary tasks 

were ready to train the ANN models. 
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SELECTION OF DISTRACTED DRIVING SURROGATE MEASURES 

The time series variables were analyzed to identify the surrogate measures that can be used to 

detect distracted driving behavior.  To achieve this, a statistical model was developed to 

detect distracted driving behavior using the five time-series performance measures: GPS 

Speed, Lateral Acceleration, Longitudinal Acceleration, Throttle Position, and Yaw Rate.  In 

other words, the five driving performance measures were used to detect the secondary task in 

which a driver was engaged.  Selecting the appropriate statistical method was an important 

task that had to be completed in order to achieve the detection goal.  In the analysis process, 

the statistical model will identify the performance measures that can be used to detect the 

type of secondary task a driver was engaged with an acceptable accuracy. 

Detection Model Selection 

Discriminant analysis and logistic regression were two statistical methods considered for use 

in the development of the detection model.  Discriminant analysis can be used to classify an 

observation into one of several populations, while logistic regression relates qualitative 

variables to other variables through a logistic cdf function [26].  Both methods have the 

ability of accomplishing a similar goal, but depending on the normality of the data, one 

method is generally recommended over the other.  For data of non-normal distribution, 

logistic regression is recommended because of its use of Maximum Likelihood Estimators 

(MLE).  Although discriminant analysis and logistic regression will likely yield similar 

results in most cases, MLE used in the latter method were proven to outperform classical 

linear discriminant analysis under non-normal data conditions [26].   As discussed in the 

previous chapter, according to the results of the tests for normality, all data used in this 

research were deemed non-normally distributed.  Therefore, logistic regression was chosen 

over discriminant analysis as the tool used to develop the prediction model. 

Multiple Logistic Regression Analysis 

Logistic regression is frequently used in research to predict the probability that a particular 

outcome will occur.  The outcome can either be a continuous-level variable or a dichotomous 

(binary) variable [25].  However, the outcomes are usually classified in a binary nature in 

Logistic regression.  In this case, the dependent variable is dichotomous and is coded as “1” 

if the event did occur and “0” if the event did not occur.  During the analysis, the logistic 

function estimates the probability that the specified event will occur as a function of unit 

change in the independent variable(s) [27].  The logistic function used to calculate the 

expected probability that Y=1 for a given value is shown in equation (2). 
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̂ 	

	
       (2) 

In the literature, logistic regression has been described as “conceptually analogous” to linear 

regression.  This similarity is because a single dependent variable is predicted from either a 

single predictor (simple logistic regression) or multiple predictors (multiple logistic 

regression) [25].  In the logistic function displayed in equation 2,   is directly 

pulled from the equation for the regression line [28].  The intent of the analysis was to use all 

five independent variables (GPS speed, lateral acceleration, longitudinal acceleration, throttle 

position and yaw rate) to detect whether the driver was or was not engaged in a secondary 

task.  Since five independent variables were considered, multiple logistic regression (MLR) 

was used instead of simple logistic regression.   

Three separate MLR tests were completed to compare the overall statistical output between 

the control and the three individual cellphone bases secondary tasks of concern.  The control 

group for each test was equal to the NDS Florida driver “events” where the driver was not 

engaged in any secondary task.  As stated earlier, only NDS events with an event severity 

defined as “Baseline” were used in the analysis.  This is because the surrogate measures 

identification was focused exclusively on driver behavior and not crash risk, and the baseline 

event severity described drives that did not result in a crash or near-crash scenario. Table 9 

describes each of the tests. 

Table 9  
Description of Multiple Logistic Regression Tests 

MLR Test Description 

Control vs. Group 1 
Engaged in No Secondary Task vs. 

Talking/Listening on Cell Phone (hand-held) 

Control vs. Group 2 
Engaged in No Secondary Task vs. 

Texting/Dialing on Cell Phone (hand-held) 

Control vs. Group 3 
Engaged in No Secondary Task vs. Adjacent 

Passenger Interaction 
 

In order to accurately interpret the results of the MLR, the binary predictor variables used 

must be coded in a very specific manner. Typically, in MLR, the group that is to be used as 

the focal or reference group is coded as “0” and the other outcome is coded as “1”.  The focal 

group in each of the comparison tests was the individual secondary task in which the driver 

was engaged.  Therefore, for each comparison test the variable that described No Secondary 

Task was coded as “1” and the specified secondary task was coded “0”. 
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Neural Network Modeling 

Since driving behavior detection is a nonlinear pattern recognition problem, artificial 

intelligence, and more specifically neural network modeling, was also deployed for 

secondary task detection and hence distracted driving surrogate measures selection.  

Artificial neural network is a modeling approach inspired by how the human brain works.  It 

is an adaptive technique that has been used in several detection and pattern recognition 

studies.  This modeling technique has been recognized for its ability to detect patterns in 

datasets and find the best non-linear function to fit these data.  Each ANN model is defined 

based on its topology and updating rules.  The topology indicates the arrangement of neurons 

and the way they are connected, while the updating rules are chosen based on ANN 

architecture and the data that are dealt with. 

In this study a supervised feed-forward network with backward propagation (FFBP) was used 

to develop the detection models.  FFBP architecture is well-known for its ability in solving 

pattern recognition problems.  A sigmoid function was used as an internal transfer function.  

Three hidden layers were selected because of the large size of the data (10,000 observations 

for each secondary tasks) such that a reasonable number of neurons can be selected in each 

layer.  The Levenberg-Marquardt algorithm was selected for the performance (optimization) 

function.  The model output defines whether a secondary task was associated with the driving 

behavior or not.  Therefore, a binary outcome of 0 or 1 was used, where 1 indicates 

association with a secondary task and 0 otherwise. 

Three ANN models were developed individually for each type of secondary task.  The input 

layer included five neurons to represent the selected five driving performance attributes.  

After a preliminary analysis to improve the model accuracy, the number of neurons in the 

hidden layers was selected as 9, 13, and 7 for the first, second, and third hidden layer, 

respectively.  To develop the three models, the dataset for each secondary task was randomly 

divided into 70% for training, 15% for validation, and 15% for testing.  The ANN model 

structure is depicted in Figure 22. 
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Figure 22  

ANN training model structure for cellphone calling 
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CRASH INDEX OUTLINE 

The literature shows the significance of driver’s engagement in secondary tasks in 

determining roadway safety.  Past research also shows that socioeconomic attributes have a 

significant impact on the crash risk and the likelihood of performing secondary tasks.  To the 

research team’s knowledge, there is no previous published work on the quantification of the 

effect of the socioeconomic characteristics on drivers’ involvement in secondary tasks and 

crash risk.  Thus, this research uses the SHRP 2 NDS data to develop an approach (grading 

system) to quantify the crash risk associated with the driving behavior based on drivers’ 

socioeconomic characteristics.  Based on this grading system, a Crash Index measure is 

developed. 

Crash Index Development 

The proposed Crash Index, also called a Crash Risk Index, could be developed in three main 

steps: (a) extract data for all secondary tasks and socioeconomic attributes from the NDS 

database; (b) select the records with high crash risk and significant effect on drivers’ 

involvement in secondary tasks; and (c) develop a grading system and a Crash Risk Index for 

quantification of crash risk. 

Extracting Secondary Tasks and Socioeconomic Attributes 

The NDS data provides detailed demographic and history questionnaires for each participant 

of the study.  The demographic questionnaires provide information on the participant’s 

personal background, while the history questionnaires provide information on their driving 

record.  The questionnaires can be used to extract several socioeconomic attributes including 

Age, Gender, Marital Status, Work Status, Average Annual Miles Travelled, Years (has 

been) Driving, Annual Household Income, Education Level, Vehicle Classification, and the 

State (participants’ location). 

Selection of Secondary Tasks and Socioeconomic Attributes 

Selection of Secondary Tasks. The Crash Risk Index quantifies the crash risk 

associated with drivers’ socioeconomic characteristics based on their tendency to perform 

secondary tasks.  As such, only secondary tasks with significantly high crash risk should be 

first identified. Through statistical analysis, the likelihood of crash when a specific secondary 

task is performed is determined.  Based on that, secondary tasks with higher crash likelihood 

are identified as high crash risk secondary tasks. 

Selection of Socioeconomic Attributes. For each secondary task with high crash risk, the 

socioeconomic attributes with significant association to drivers’ involvement in that task 
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should be determined.  Statistical association relationships can be determined using statistical 

analysis techniques such as MLR.  Socioeconomic attributes that significantly increase the 

likelihood of drivers’ engagement in high crash risk secondary tasks should then be selected.   

Grading System and Crash Risk Index 

This section describes a proposed grading system to quantify the crash risk associated with 

drivers based on their socioeconomic characteristics.  This could be accomplished in three 

consecutive steps performed at three different levels as shown in Figure 23.  First, the crash 

risk associated with each secondary task should be quantified.  Then, the effect of the 

different socioeconomic attributes on the likelihood of performing that secondary task should 

be quantified.  Finally, the effect of each socioeconomic attribute should be broken down by 

the different categories within that attribute.  This is to determine the relative effect of each 

category for a socioeconomic attribute on the likelihood of performing the secondary task in 

step 1.  The effects in the three steps can be labeled as (a) Crash Risk Coefficient for the first 

step, (b) Significance Level Coefficient for the second step, and (c) Category Contribution 

Coefficient for the third step. 

The Crash Risk coefficient (	 ) is defined based on the odds ratios for each task (i),  the 

Significance Level Coefficient (aij) quantifies the effect a socioeconomic attribute (j) on the 

likelihood of drivers’ involvement in secondary task (i), and the Category Contribution 

coefficient (bijk) will be measured for the category (k) within each Significant Attribute (j).  

These three coefficients could represent the grading system for the crash risk associated with 

performing the different secondary tasks based on drivers’ socioeconomic characteristics.  

The three coefficients can be used to quantify the crash risk associated with drivers’ tendency 

to conduct secondary tasks based on their socioeconomic characteristics.  This crash risk can 

be measured as a Crash Risk Index (CRI) that is calculated using equation (3). 

∗ ∑ ∗	∈	     (3) 
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Figure 23  
Crash risk quantification tree 

Where, s(i) is the set of attribute (j) with significant influence on the likelihood of performing 

secondary task (i) and CRIi is the CRI value associated with the high-crash-risk secondary 

task (i).  CRI is calculated for each secondary task individually.  To calculate the overall CRI 

value associated with all high-crash-risk secondary tasks, equation (4) is used. 

∑      (4) 
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DISCUSSION AND RESULTS 

Selection of Distracted Driving Surrogate Measures 

SAS Enterprise Guide 6.1 was called upon again to run the MLR analysis.  In SAS Enterprise 

Guide, the output generated in the MLR consisted of a Chi-square value and the 

corresponding p-value that described how well the model performed in predicting the 

outcome of the event or focal group.  The Chi-square procedure used to test the statistical 

significance of the logistic regression model is similar to the analysis of variance procedure 

that is used linear regression.  In logistic regression, a true R-square value cannot be 

computed but SAS has the ability to estimate “pseudo” R-square values [25].  These values 

are interpreted the same way as the actual R-square from linear regression.  Logistic 

regression also estimates the amount of dependent variable variance accounted for by the 

model.   

The Hosmer and Lemeshow test is used in MLR to assess whether the predicted probabilities 

match the observed probabilities using a Chi-square statistic.  If the p-values for this test are 

significant, this means the model predictions are not in accordance with those observed.  If 

the converse is true, this is an indication that the model predictions and actual observations 

are about the same and the model provided a good fit of the data.   

All of the output is useful; however, the outputs of most interest in the MLR are the p-values 

for the Hosmer and Lemeshow Test, the estimates for the Analysis of MLE, and the Odds 

Ratio Estimate.  The estimates computed in the Maximum Likelihood Estimation (MLE) are 

the coefficients used to create a regression line.  The regression lines for each of the three 

tests represent the prediction model that can help to identify the surrogate measures of 

distracted driving.  The odds ratio is associated with each predictor describes the odds of a 

case being coded as “0” on the dependent variable.  It indicates the amount of change 

expected in the odds when there is a 1-unit change in the predictor variable.   

Results of Overall MLR Tests 

In each of the three tests against the control, the R-square values were very low, all of which 

below 0.02.  This signifies very little of the dependent variable variance that could be 

accounted for by the models.  Estimates generated for the analysis of MLE have a p-value for 

each estimate respectively.  These p-values reveal whether the MLE estimates are of 

statistical significance, however, since the R-square values revealed the models were weak to 

begin, the p-values provided little further insight. 
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The Control vs. Group 1 test compared no secondary tasks to drivers engaged in 

talking/listening on a hand-held cell phone.  The results indicated the model predictions do 

not statistically match the observed data and therefore the model did not fit the data well.  

The p-value for the Hosmer and Lemeshow Goodness-of-Fit Test equaled <0.0001 and was 

used to draw this conclusion.   The odds ratios for three out of the five variables were around 

1.0; values of 1.008, 1.003, and 0.978 for GPS speed, throttle position and yaw rate 

respectively.  In the case of the variable GPS speed, this means for a one-unit increase in 

driver’s GPS speed, the odds of that driver being classified in Group 1 are increased by 1.008 

times.  Since the odds ratio for GPS speed, throttle position and yaw rate are all so close to 

1.0, one can conclude there is no accuracy in the prediction for these values.  The 

acceleration variables had odds ratios that were not as close to 1, as longitudinal 

acceleration’s odds ratio was equal to 0.393.  More interestingly, the odds ratio for lateral 

acceleration was 17.013.  Thus, the drivers lateral acceleration seemed to have a major 

impact on whether they would be classified in Group 1 (talking/listening on the phone).  The 

regression line formed using the MLE estimates is shown in equation (5).  This equation 

detects whether a driver was categorized in talking/listening on a hand-held cell phone, 

where x1=GPS speed, x2= lateral acceleration, x3= longitudinal acceleration, x4= throttle 

position and x5=yaw rate.  

. . . . . .    (5) 

The Control vs. Group 2 test compared no secondary tasks to texting/dialing on a hand-held 

cell phone.  This test produced slightly different results from the previous test but followed a 

similar trend.  The Hosmer and Lemeshow p-value result was again significant at 0.0003.  

This signifies that the model was not a good fit for this data, as a significant value for the 

Hosmer and Lemeshow test means that the predictions made in the model are different from 

those observed.  The GPS speed, throttle position and yaw rate odds ratios had values of 1.0, 

1.021, and 0.975 respectively.  This again meant that the model had little accuracy in regards 

to prediction using these variables.  Longitudinal acceleration’s odds ratio was similar to the 

previous test as well at 0.051, and lateral acceleration’s odds ratio was quite high again 

21.556.  Therefore, with a one-unit increase in the lateral acceleration, the driver was 21 

times more likely to be categorized as texting/dialing on his or her cell phone.  The 

regression line for this test is reflected in equation (6) where the variables are the same as 

described previously. 

. . . . . .    (6) 

The Control vs. Group 3 test analyzed no secondary tasks to some form of driver interaction 

with an adjacent passenger.  The Hosmer and Lemeshow test p-value was again <0.0001.  
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The GPS speed, throttle position and yaw rate odds ratios were all around 1.0 as well and 

longitudinal acceleration was similar to the previous tests at 0.227.  However, the lateral 

acceleration odds ratio trended differently this time around at a value of 0.004, significantly 

lower than the Control vs. Group 1 and Group 2 tests.  In summary, there is no accuracy in 

the detection of the different types of secondary tasks using the GPS speed, throttle position 

and yaw rate.  Only slightly better detection power can be achieved with the longitudinal and 

lateral accelerations.  The last regression equation is defined in equation (7). 

. . . . . .    (7) 

Figure 24 displays a summary of the odds ratio values calculated for each test.  The 

horizontal axis distinguishes each test where 1 = Test 1 (Control vs. Group 1) and so forth.  It 

is clear from the figure that the lateral acceleration is the only variable that can be identified 

as a surrogate measure for distracted driving behavior resulting from secondary tasks in 

Group 1 and Group 2.  A 1-unit increase in drivers’ lateral acceleration increased their 

chances of being categorized in both Group 1 and Group 2.  In practical terms, if a driver 

increased his/her lateral acceleration slightly, that driver was 17 times more likely to be 

talking/listening on the phone and 21 times more likely to be texting.  Very little other 

information could be ascertained from the three overall MLR tests.  Also, although the lateral 

acceleration variable proved to have predictive power within the tests against Groups 1 and 

2, the overall test itself for all three groups was proven very weak and unreliable.  Thus, the 

claims just made regarding the lateral acceleration variable should not be taken as actual fact 

due to the fact that the data was not a good fit for the models it developed. 

 
 

Figure 24  
Summary of Odds Ratio results for overall multiple logistic   
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Regression Tests. Since all three models were proven to have a weak predictive 

power, there was no need to validate the equations using regression analysis.  It is 

recommended that further study be conducted to produce stronger models and validation be 

tested on those.  Although the three initial multiple logistic regression tests had extremely 

low pseudo-R values and Hosmer and Lemeshow p-values, more tests were conducted in 

order to discover if any trends were apparent based on the drivers' age and gender.  The data 

was partitioned by driver age and driver gender in order to run the additional MLR tests. 

Results of MLR based on Driver Age.  Instead of using the original 16 driver age 

groups, five groups were created to provide a larger sample size within each group for the 

multiple logistic regression test: ages 16-29, 30-49, 50-69, 70-89, and 90 and older.  A MLR 

test was run for the Control group vs. Group 1, Control group vs. Group 2, and Control group 

vs. Group 3 for each of the five age groups excluding the oldest drivers in the 90 and older 

group as there were no instances of drivers engaged in any secondary tasks within this age 

group.  This was also true for the Group 2 task (texting/dialing) with regard to age groups 50-

69 and 70-89.  Cases where the MLR test could not be run due to no instances of the 

appropriate secondary task have been left blank in the summary tables to reflect this fact. 

The pseudo-R-square and Hosmer and Lemeshow p-values resulting from these tests were 

similar to those found in the original round of MLR tests.  All R-square were less than 0.3 

which means very little of the variance could be accounted for by the dependent variables.  

The p-values for the Hosmer and Lemeshow test were significant for most of the tests 

meaning that the predicted estimates did not statistically match those observed.  However, for 

drivers’ ages 30-49, the Hosmer and Lemeshow p-values were not significant for Group 2 

and Group 3 tests at 0.0889 and 0.0759 respectively.  Due to this result, the odds ratios for 

these age groups within the Group 2 and Group 3 tests can be deemed more credible. 

However, the p-values were still very close to the alpha specified (0.05), therefore these 

values barely made the cut of being considered not statistically significant.  The Hosmer and 

Lemeshow p-values for each of the tests previously described are displayed in Table 10. 

Table 10  
Hosmer and Lemeshow p-values for MLR tests partitioned by age 

Driver Age 
Control vs. 

Group 1 Test 
Control vs. 

Group 2 Test 
Control vs. 

Group 3 Test 
16-29 0.0008 <0.0001 <0.0001 
30-49 <0.0001 0.0889 0.0759 
50-69 <0.0001 - <0.0001 
70-89 0.0044 - <0.0001 

90 & older - - - 



  

53 
 

Table 11 displays the odds ratios for each of the performed MLR tests partitioned by driver 

age.  In regards to GPS speed, throttle position, and yaw rate variables, the odds ratios for all 

ages across all three tests were similar and close to 1.0.  This means that the odds ratio did 

not predict any specific driver behavior and was not useful.  On the other hand, the odds 

ratios for both lateral and longitudinal acceleration provided different results.  The younger 

drivers (ages 16-29) had very high odds ratios when examining Group 1 and Group 2 at 

48.123 and 120.35 respectively.  These odds ratios were significant, if a driver between the 

ages 16-29 increased his/her lateral acceleration by just 1-unit, that driver was 48 times more 

likely to be talking/listening on the phone and 120 times more likely to be texting.  

According to this result, lateral acceleration was a valid surrogate measure for which to 

identify whether younger drivers were engaged in either of these tasks.  Longitudinal 

acceleration also seemed to be a good predictor for two specific secondary tasks, this time for 

drivers ages 30-49 and 70-89.  The odds ratio found in the Control vs. Group 2 test for ages 

30-49 was 171.78.  For ages 70-89, the odds ratio was >999 when examining the Control vs. 

Group 1 test.  Therefore, the driver was almost 1000 times more likely to be classified as 

talking/listening on the phone for drivers 70-89 and 171 times more likely to be classified as 

texting/dialing with a 1-unit increase in his/her longitudinal acceleration.  Older driver’s 

longitudinal acceleration seemed to be a better indicator of certain types of driver distraction, 

while lateral acceleration was a better indicator for younger drivers. 
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Table 11  
Odds Ratio results of MLR tests partitioned by age 

Variable Driver Age 
Control vs. 

Group 1 Test 
Control vs. 

Group 2 Test 
Control vs. 

Group 3 Test 

GPS Speed 

16-29 1.007 0.998 1 
30-49 1.005 1.008 1.018 
50-69 1.039 - 1.009 
70-89 0.958 - 0.996 

90 & older - - - 

Lateral 
Acceleration 

16-29 48.123 120.35 0.004 
30-49 0.038 <0.001 <0.001 
50-69 0.578 - <0.001 
70-89 <0.001 - 0.17 

90 & older - - - 

Longitudinal 
Acceleration 

16-29 0.282 0.007 0.239 
30-49 0.231 171.78 <0.001 
50-69 0.003 - 1.269 
70-89 >999.999 - 0.428 

90 & older - - - 

Throttle 
Position 

16-29 0.998 1.03 1.002 
30-49 1.013 0.998 1.09 
50-69 1.007 - 1.007 
70-89 0.945 - 1.004 

90 & older - - - 

Yaw Rate 

16-29 0.962 0.944 1.059 
30-49 1.069 1.162 1.213 
50-69 1.08 - 1.116 
70-89 1.076 - 1.031 

90 & older - - - 

 

Results of MLR based on Driver Gender 

The MLR test was performed for the Control group vs. Group 1, Control group vs. Group 2 

and Control group vs. Group 3 based on the participant’s gender.  All R-square values were 

less than 0.05 which means very little of the variance could be accounted for by the 

dependent variables.  The p-values for the Hosmer and Lemeshow test were significant for 

all but one of the gender partitioned MLR tests: most of the predicted estimates did not 

statistically match those observed.  However, for the female drivers within the Control vs. 

Group 1 test the Hosmer and Lemeshow p-value was not significant at 0.1116 for alpha equal 

to 0.05.  Due to this result, the odds ratio for the women included in this test can be deemed 

more credible. The Hosmer and Lemeshow p-values for each of the tests are in Table 12. 
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Table 12  
Hosmer and Lemeshow p-values for MLR tests partitioned by gender 

Driver Gender 
Control vs. 

Group 1 
Control vs. 

Group 2 
Control vs. 

Group 3 
Male <0.0001 <0.0001 <0.0001 

Female 0.1116 <0.0001 <0.0001 
 

The odds ratios for each of the MLR tests partitioned by gender are in Table 13. A similar 

trend was seen when examining the odds ratios based on gender as to that obtained for the 

age.  The GPS speed, throttle position, and yaw rate odds ratios were all close to 1.0 

regardless of the gender or the secondary task that was examined.  The odds ratio for lateral 

acceleration, on the other hand, was the highest for both Group 1 and Group 2 tests.  For the 

Control vs. Group 1 test, regardless of the gender, the odds ratio was near 14, making both a 

male and female driver about 14 times more likely to be classified as talking/listening with 

an increase in his/her lateral acceleration.  However, when the texting/dialing task (Group 2) 

was tested, males and females were around 179 and 4 times, respectively, more likely to be 

classified as such when increasing their lateral acceleration.  It appears the lateral 

acceleration performance variable was useful for predicting texting/dialing as well as 

talking/listening for all drivers, but especially good at predicting such male drivers. 

Finally, when testing whether the driver was talking/listening on the phone, the odds ratio for 

longitudinal acceleration for females was around 5, while this same value for males was 

almost 0.  This means an increase in longitudinal acceleration in female drivers made them 

more likely to be talking/listening, however the same conclusion could not be drawn for male 

drivers in the same scenario. 

Table 13  
Odds ratio results of MLR tests partitioned by gender 

Variable 
Driver 
Gender 

Control vs. 
Group 1 

Control vs. 
Group 2 

Control vs. 
Group 3 

GPS Speed 
Male 1.012 0.995 1.006 

Female 1.006 1.003 0.999 

Lateral 
Acceleration 

Male 14.998 178.668 0.002 

Female 13.446 4.197 0.011 

Longitudinal 
Acceleration 

Male 0.011 0.095 0.318 

Female 5.427 0.039 0.144 

Throttle 
Position 

Male 1.035 1.021 1.012 

Female 0.981 1.019 1.013 

Yaw Rate 
Male 0.991 0.916 1.054 

Female 0.978 1.028 1.075 
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Neural Network Modeling Results 

The regression curves, confusion matrix, and Receiver Operating Characteristic (ROC) 

curves were used as performance attributes of the three ANN models.  The curves were 

obtained for the training, validation, and testing results.  The following sections present a 

discussion of the results obtained for each of the three models (Calling, Texting, and 

Passenger Interaction). 

Cell Phone Calling. Figure 25(a) shows the regression results for the training, 

validation, and testing datasets of the cellphone calling secondary task.  Ideally, each point 

should fall on the 45-degree, “Y=T” line, which represents outputs = targets.  The closer the 

output points to the 45-degree line, the more accurate the detections are.  The colored lines 

represent the best linear fitting for the model.  The best case scenario for these lines matches 

the “Y=T” line.  As shown in Figure 25(a) the two lines are very close and almost 

indistinguishable.  This implies a good fit of the developed model.  This is reflected by the 

correlation coefficient (R) between the model output and the target results.  R value is an 

indication of the relationship between the outputs and targets.  If R = 1, this indicates that 

there is an exact linear relationship between outputs and targets.  If R is close to zero, then 

there is no linear relationship between outputs and targets.  The correlation coefficient values 

for the training, validation, and testing datasets are close to 0.99, which indicates a high 

correlation between the predicted and observed values. 
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(a) Regression Results 
 

(b) Confusion Matrix 

 
(c) Receiver Operating Characteristic (ROC) 

curves  

 

Figure 25  
Detection results for the cellphone calling model 

 

The results are confirmed by the confusion matrices shown in Figure 25(b).  In each matrix, 

the “target class” at the bottom represents the correct class that each observation should be 

placed in.  The “output class” on the vertical side shows the ANN-model classification 

results.  If the output class is identical to the target class, this observation is determined as 
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accurate/correct detection, and will be located accordingly.  For each column, the number in 

each block shows the number of observations that ANN accurately or wrongly classified.  

The bottom row and the right-most column, shown in gray, provide the accurate rate (top 

value in percentage) and error rate (bottom value in percentage) for each class.  As shown in 

the matrix, calling model has an outstanding overall classification sensitivity of 98% with a 

false negative rate of 1.8%, 3.7% and 1.2% for the training, validation, and testing datasets, 

respectively. 

The confusion matrix can also be used to extract two important attributes: sensitivity and 

specificity.  Sensitivity (or true positive rate) is defined as an observation classified by the 

model as “1” when the target is “1.”  Specificity (true negative rate) is defined as an 

observation classified by the model as “0” when the target value is “0”.  As shown in the 

matrix, the model has high sensitivity and specificity values of 98% and 100%, respectively.  

To further evaluate the performance of the ANN model, the ROC curves are used.  The 

closer the curve is to the 45-degree diagonal of the ROC space and the less the area between 

the curves and the 45-degree line is, the less accurate the model is.  According to the ROC 

plots in Figure 25c, the model detection performance is outstanding since the covered area 

under the blue lines is almost 100% of the total area above the 45-degree line. 

Cell Phone Texting.  The results depicted in Figure 26 show that the Texting 

detection model does not perform as well as the Calling model; yet, it is still a promising 

performance.  As shown in Figure 26(a), the correlation coefficient values for the training, 

validation, and testing datasets are 0.98, 0.95, and 0.95, respectively.  The regression curves 

clearly show that the fitting and target lines are discernible which indicates lower 

performance compared to the Calling detection model. 

The confusion matrix in Figure 26(b) also shows promising results for the Texting detection 

model.  The overall model sensitivity was 98.1% with individual sensitivity rates of 99.7%, 

95.6%, and 92.8% for the training, validation, and testing datasets, respectively.  By looking 

at the validation results, Texting model has very slightly lower accuracy than Calling; yet, 

Texting model also has a very good detection performance. These results are supported by 

the covered area in the ROC curves shown in Figure 26(c).  The figures show a very slightly 

less covered area for texting compared to calling. 
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(a) Regression Results 

 
(b) Confusion Matrix 

 
(c) Receiver Operating Characteristic   

 

Figure 26  
Detection results for the texting model 

Passenger Interaction.  For the Passenger Interaction detection model, the results 

show that this model is the least accurate in its predictions compared to texting and calling.  

Figure 27(a) shows a correlation coefficient for the Passenger Interaction model of around 

0.9828 and a detection accuracy rate of  99.7% as shown in Figure 27(b).  These values are 

marginally lower than those for Texting and Calling models.  According to the literature, the 

amount of cognitive distraction associated with passenger interactions is the least compared 

to texting and calling [29].  This means that the changes in the associated driver behavior are 
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not as significant as those associated with either texting or calling.  Yet, the detection 

performance of the model is still considered outstanding with a sensitivity value of 98.1%.  

By looking at the ROC curves in Figure 27(c), it is clear that the covered area under the blue 

lines is almost 100%. 

(a) Regression Results 
 

(b) Confusion Matrix 

 
(c) Receiver Operating Characteristic   

 

Figure 27  
Detection results for the Passenger Interaction model  
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CONCLUSIONS 

The objectives of this research were to conduct a thorough exploration of the SHRP 2 NDS 

data to identify appropriate performance measures that can be used as surrogate measures of 

distraction, and to outline a methodology for developing a crash index.  The time series and 

events NDS data were used to develop the models.  GPS speed, lateral and longitudinal 

acceleration, throttle position, and yaw rate were the driving performance measures of 

drivers’ engagement in one of three defined groups of secondary tasks: talking/listening on 

hand-held phone, texting/dialing on hand-held phone, and interacting with the adjacent 

passenger.  The time series nature of the input used provided more robust data than data 

typically used in distracted driving studies, as they can show minor changes in the driving 

pattern associated with the different secondary tasks.  To identify the appropriate distracted 

driving surrogate measures, statistical secondary task detection models were developed.  The 

input data used in the detection models included the time series data of the aforementioned 

five performance variables.  

Multiple logistic regression was used to determine the odds of a driver being engaged in one 

of the secondary tasks, given their corresponding driving performance data.  The results 

indicated that none of the models computed had strong R-square values.  However, according 

to the outcomes observed when analyzing tasks in Group 1 (talking/listening on the phone) 

and Group 2 (texting/dialing on the phone), a change in lateral acceleration seemed to be an 

indicator the driver was in one of those two groups.  In the test analyzing adjacent passenger 

interaction, or Group 3, little was revealed in the results, an indication that the five 

performance measures did not significantly increase or decrease when that interaction took 

place.  These results indicated that only the lateral acceleration could be used a surrogate 

measure to detect distracted driving resulting from secondary tasks in Group 1 and Group 2. 

When considering the driver’s age, a similar trend was observed.  Driver’s acceleration was a 

good indicator of the participant either talking/listening or texting/dialing.  Older driver’s 

longitudinal acceleration seemed to be a better indicator of distracted behavior resulting from 

these secondary tasks, while lateral acceleration was a better indicator for younger drivers.  

When the data was analyzed based on driver gender, the lateral acceleration performance 

variable proved to be useful for predicting texting/dialing as well as talking/listening for all 

drivers.  More so, longitudinal acceleration proved to be useful for predicting distracted 

driving behavior resulting from the same secondary tasks for female drivers. 

When analyzing the data using neural networks, researchers obtained different and more 

credible results as compared to the logistic regression analysis.  The developed neural 
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network models proved the five performance measures (speed, lateral acceleration, 

longitudinal acceleration, yaw rate, and throttle position) to be important as surrogate 

measures for distracted driving behavior.  Using the five measures, the results showed that all 

three neural network models have accurate detection capabilities.  This was obvious in terms 

of accuracy rates for the three models which exceeded 95%.  Expressing the selected five 

driving performance attributes in terms of their standard deviation also proved to be an 

effective approach for capturing the driving pattern associated with each secondary task.  

These results show that the selected driving performance attributes were effective in 

detecting the associated secondary tasks with driving behavior.  In other words, if detailed 

information of speed, longitudinal acceleration, lateral acceleration, throttle position, and 

yaw rate could be gathered, ANN model could detect the likelihood of driver’s engagement 

in calling, texting, or interacting with a passenger with a considerably high accuracy. 

In summary, this research showed how useful the SHRP2 NDS data could be for distracted 

driving studies.  Although the statistical analysis results of this research cannot be taken as 

credible in most cases, they showed that the high-quality and high-resolution data available 

on the SHRP 2 NDS database can provide useful insight on detecting distracted driving.  

Identifying the right surrogate measures and the use of a more suitable analysis tool that can 

recognize nonlinear patterns in driving behavior can help in detection of distracted driving 

behavior.  Therefore, the neural network modeling was deployed to analyze the five 

performance measures.  Unlike the multiple logistic regression, the neural network analysis 

identified the five-time series measures as important surrogate measures of distracted driving 

behavior.  The developed neural network models also showed high accuracy in detecting 

drivers’ engagement in secondary tasks.  The proposed crash index outline can also provide 

an insight on quantifying the crash risk associated with distracted driving behavior. 
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RECOMMENDATIONS 

Based on the findings of this study, several recommendations are made as follows: 

 The proposed crash index in this study is only an outline, yet it shows good potential 

for quantification of crash risk associated with distracted driving behavior.  Thus, 

statistical analysis can be performed on the SHRP 2 NDS events and socioeconomic 

characteristics data to provide a clear insight on how crash index can be quantified. 

 The provided summary on state regulations of cellphone use in this study can be 

further investigated using SHRP2 NDS data.  The available data in the NDS database 

can be used to identify whether further recommendations can be made about the 

available state regulations. 

 The available data can also be used in conjunction with the Roadway Information 

Database to evaluate the crash risk associated with distracted driving behavior at 

different roadway facility types. 

 Artificial Intelligence (AI) proved itself as a promising tool to analyze the nonlinear 

pattern in drivers’ behavior and detect drivers’ engagement in secondary tasks.  A 

possible extension for this would be investigating whether AI can be used to detect 

the type of secondary task drivers are engaged in.  The accurate secondary task 

detection achieved by the neural networks, triggered extending the research in this 

area to identification of secondary task type using artificial intelligence and machine 

learning tools. 

 The available data can also be used to investigate changes in driving pattern before 

crashes and near-crashes take place when specific secondary tasks are performed. 
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

CTRE    Center for Transportation Research and Education 

CTS    Center for Transportation Studies 

DAS    Data Acquisition System 

DOTD  Louisiana Department of Transportation and Development 

FCW   Forward Collision Warnings 

FHWA  Federal Highway Administration 

g/s  Gravitational Force per Second 

GEV   Generalized Extreme Function 

GPS   Geographic Positioning System 

IRB   Institutional Review Board 

km/h  Kilometer per Hour 

LTRC  Louisiana Transportation Research Center 

MLE   Maximum Likelihood Estimators 

MLR  Multiple Linear Regression 

NDS  Naturalistic Driving Study 

NHTSA National Highway Traffic Safety Administration 

RID   Roadway Information Database 

SHRP 2  Second Strategic Highway Research Program 

TTC  Time to Collision 

UTC  University Transportation Centers 

VTTI  Virginia Tech Transportation Institute 
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APPENDIX A  

All Data Available for Each Category Within the NDS 

Data 
Category 

Topic Subtopic 

Drivers 

Summary Statistics on Drivers 

by Age Group 
by Age Group and Gender 
Data collected by Driver Age Group 
Data collected by Driver Age 
Gender 

Driver Demographic Questionnaire 

  

Driving History Survey 
Driving Knowledge Survey 
Visual/Cognitive Tests 
Conner's Continuous Performance Test 
Clock Drawing Assessment 
Physical Strength Tests 
Barkley's ADHD Screening Test 
Risk Perception Questionnaire 
Risk Taking Questionnaire 
Sensation Seeking Scale Survey 
Driver Behavior Questionnaire 
Medical Conditions & Medications 
Sleep Habits Questionnaire 
Medical Conditions and Medications - Exit 
Driver Exit Interview 

Vehicles 

Vehicles by Vehicle Classification 
Vehicles by Model Year 
Vehicles by Beginning Mileage 
Vehicles Active by Calendar Month 
Data Collected by Vehicle 
Data Collected by Vehicle Classification 
Vehicle Detail Table 

Trips 

Trip Summary Table 
Time Series 
Data Collected by Trip Start Hour of Day 
Data Collected by Day of Week 
Maximum Deceleration 
Maximum Speed 
Maximum Deceleration by Vehicle 
Classification 
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Data 
Category 

Topic Subtopic 

Maximum Speed by Vehicle Classification 
Maximum Deceleration by Age Group 
Maximum Speed by Gender 
Maximum Deceleration by Data Collection 
Site 
Maximum Speed by Data Collection Site 
Travel Density Map for Florida 
Travel Density Map for Indiana 
Travel Density Map for New York 
Travel Density Map for North Carolina 
Travel Density Map for Pennsylvania 
Travel Density Map for Washington 

Events 
Post-Crash Interview 
Event Detail Table 

Query 
Builder 

User can select variables and conditions to 
submit to query 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

73 
 

APPENDIX B  

List of All Secondary Task Options Available within the NDS Dataset 

1 No Secondary Task 
2 Talking/Singing audience unknown 
3 Dancing 
4 Reading 
5 Writing 
6 Passenger in adjacent seat - interaction 
7 Passenger in rear seat - interaction 
8 Child in adjacent seat - interaction 
9 Child in rear seat - interaction 
10 Moving object in vehicle 
11 Insect in vehicle 
12 Pet in vehicle 
13 Object dropped by driver 
14 Reaching for object, other 
15 Object in vehicle, other 
16 Cell phone, holding 
17 Cell phone, Talking/listening hand-held 
18 Cell phone, Talking/listening, hands-free 
19 Cell phone, Texting 
20 Cell phone, Browsing 
21 Cell phone, Dialing hand-held 
22 Cell phone, Dialing hand-held using quick keys 
23 Cell phone, Dialing hands-free using voice-activated software 
24 Cell phone, Locating/reaching/answering 
25 Cell phone, other 
26 Tablet device, Locating/reaching 
27 Tablet device, Operating 
28 Tablet device, Viewing 
29 Tablet device, Other 
30 Adjusting/monitoring climate control 
31 Adjusting/monitoring radio 
32 Inserting/retrieving CD (or similar) 
33 Adjusting/monitoring other devices integral to vehicle 
34 Looking at previous crash or incident 
35 Looking at pedestrian 
36 Looking at animal 
37 Looking at an object external to the vehicle 
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38 Distracted by construction 
39 Other external distraction 
40 Reaching for food-related or drink-related item 
41 Eating with utensils 
42 Eating without utensils 
43 Drinking with lid and straw 
44 Drinking with lid, no straw 
45 Drinking with straw, no lid 
46 Drinking from open container 
47 Reaching for cigar/cigarette 
48 Lighting cigar/cigarette 
49 Smoking cigar/cigarette 
50 Extinguishing cigar/cigarette 
51 Reaching for personal body-related item 
52 Combing/brushing/fixing hair 
53 Applying make-up 
54 Shaving 
55 Brushing/flossing teeth 
56 Biting nails/cuticles 
57 Removing/adjusting clothing 
58 Removing/adjusting jewelry 
59 Removing/inserting/adjusting contact lenses or glasses 
60 Other personal hygiene 
61 Other non-specific internal eye glance 
62 Other known secondary tasks 
63 Unknown type (secondary task present) 
64 Unknown  
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APPENDIX C  

Summary of Data Removed During Editing Phase of Analysis 

Variable 
Grou
p 

Origin
al 
Total 

Outside Acceptable 
Limits 

Missing 
Data 

Outliers New 
Total 

Criteria # Removed # Removed Criteria # Removed 

GPS Speed 

0 32262 < 0 700 63 > 150 8 31491 
1 3483 < 0 146 0 n/a 0 3337 
2 1678 < 0 66 0 n/a 0 1612 
3 9518 < 0 140 0 n/a 0 9378 

Lateral 
Acceleration 

0 32262 -999 90 63 <-0.5 or >0.5 6 32103 
1 3483 -999 0 0 ≤ -0.31 or >0.4 8 3475 
2 1678 -999 0 0 <-0.18 or >0.30 6 1672 
3 9518 -999 21 0 ≤-0.5 or >0.4 4 9493 

Longitudinal 
Acceleration 

0 32262 -999 46 63 <-0.4 or >0.3 8 32145 
1 3483 -999 0 0 <-0.3 or ≥0.25 9 3474 
2 1678 -999 0 0 <-0.25 or ≥0.25 14 1664 
3 9518 -999 21 0 ≤-0.5 or >0.4 4 9493 

Throttle 
Position 

0 32262 < 0 7512 63 >70 33 24654 
1 3483 < 0 1082 0 ≥45 13 2388 
2 1678 < 0 563 0 >50 15 1100 
3 9518 < 0 2477 0 ≥85 9 7032 

Yaw Rate 

0 32262 < -100 43 63 ≤-35 or >30 16 32140 
1 3483 < -100 21 0 ≤-30 or >25 3 3459 
2 1678 < -100 0 0 ≤-20 or >20 10 1668 
3 9518 < -100 21 0 ≤-30 or ≥30 6 9491 
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